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No less than four structures have been proposed for the 
crystalline product formed on condensation of resorcinol with 
maleic anhydride in the presence of zinc chloride or concen- 
trated sulfuric acid. Two of these structures, namely bis- 
(2',4'-dihydroxypheny1)but-2-en-1,4-dione1 and 4,4-bis(2', 
4'-dihydroxypheny1)but-2-en-4-olide2 are untenable on the 
basis of the NMR spectrum whereas the isomeric y-lactone 
l3 and &lactone 24 structures are indistinguishable by this or 
other spectrometric methods. Unequivocal structural proof 
by chemical methods was therefore essential. 

Methylation of the phenolic condensation product3 or its 
triacetate4 yielded a tetramethyl ether methyl ester 3, R = Me, 
or 4, R = Me, but assignment of either one or the other of these 
structures to this compound was not possible from the spec- 
troscopic evidence. Although both esters 3, R = Me, and 4, R 
= Me, had been obtained previously5 by Friedel-Crafts con- 
densation of resorcinol dimethyl ether with 2,4-dimethoxy- 
phenylsuccinic anhydride followed by esterification and 
structural assignments made on analogical arguments, the 
formation of both isomers in the same reaction precludes such 
assignments in the absence of more definitive evidence. 

Structure 4, R = Me, for the tetramethyl ether methyl ester 
was initially supported by comparison of the NMR spectrum 
with that of its oxime. Thus, the methine proton exhibited a 
43-ppm upfield shift on oximation, whereas one of the 
methylene protons showed an upfield shift of 28 ppm and the 
other a downfield shift of 14 ppm. In contrast, oximation of 
an ester having structure 3, R = Me, would be expected to 
show a more pronounced effect upon the methylene protons 
compared to the methine proton, although such shifts would 
be sensitive to stereochemistry. 

However, hydrolysis of the ester to the free acid and re- 
duction of this compound with sodium borohydride provided 
unequivocal chemical evidence in favor of structure 3. The 
crystalline reduction product, mp 121-2 "C, analyzed for 
C2oH2206, showed a strong lactone carbonyl band a t  1770 
cm-l in the infrared spectrum and exhibited a strong peak in 
the mass spectrum at mle 314 due to expulsion of C02 from 
the molecular ion. The NMR spectrum indicated the presence 
of two 2,4-dimethoxyphenyl groups and a strongly coupled 
4-spin system. The product must therefore be either 2,4- 
bis(2',4'-dimethoxyphenyl)-y-butyrolactone ( 5 )  or 3,4- 
bis(2',4'-dimethoxyphenyl)-cu-butyrolactone (6) which would 
result from lactonization of the secondary alcohol initially 
produced on reduction of the acids 3, R = H, or 4, R = H, re- 
spectively. Further analysis of the NMR spectrum readily 
distinguished between the isomeric lactones 5 and 6 since the 
high-field methylene proton signals occurred as a multiplet 
a t  6 2.30 and a multiplet at  6 2.92, whereas the benzylic 
methine protons appeared as double doublets at  6 4.05 and 
5.74. The reduction product is therefore the 2,4-disubstituted 
lactone 5, the magnitude of the coupling constants indicating 
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the cis configuration, as determined for related d-butyrolac- 
tones.6 

The precursor of the latter is thus the acid 3, R = H, which 
on heating under reflux in acetic anhydride gave the dehydro 
derivative of the lactone 5 ,  namely 2,4-bis(2',4'-dimethoxy- 
phenyl)but-2-en-4-olide (7). The infrared spectrum of the 
latter showed the expected a,@-unsaturated lactone carbonyl 
band a t  1750 cm-l, while the NMR spectrum exhibited dou- 
blets due to the H3 and H4 protons at  6 7.87 and 6.33 ( J  = 2 
H d I 7  respectively. 

The synthesis of the lactones 5 and 7 via the acid 3, R = H, 
and its corresponding ester 3, R = Me, from the resorcinol- 
maleic anhydride condensation product therefore unequivo- 
cally establishes the structure of the latter as 3-(2',4'-dihy- 
droxybenzoylmethyl)-6-hydroxybenzofuran-2-one (1). 

Experimental Sections 
Melting points are uncorrected. The lH  NMR spectra were ob- 

tained with a Varian HA-100 spectrometer in CDC13 solution. Infrared 
spectra were recorded with a Perkin-Elmer Model 237B spectro- 
photometer in CHC13 solution. 
Methyl 2,4-Bis(2',4'-dimethoxyphenyl)-4-oxobutyrate Oxime. 

The ester 3, R = Me (0.5 g), hydroxylamine hydrochloride (1.0 g), and 
NaOAc (1.0 g) were heated together a t  100 OC in 50% aq EtOH (40 
mL) for 1 h. The mixture was poured into H20 and the precipitated 
solid was filtered off and recrystallized from aqueous MeOH as white 
prisms: mp 139-141 OC; NMR 6 3.29 (dd, J = 14,9 Hz, 1 H, CHz), 3.52 
(dd, J = 14,6 Hz, 1 H, CH2), 4.16 (dd, J = 9,6 Hz, 1 H, CH), 3.55 (9, 

3 H,0CH3),3.62 (s,3 H,C02CH3),3.77 (s,3 H,0CH3),3.78 (s ,6  H, 
2 X OCH3), 6.24-6.54 (m, 4 H, ArH), 6.76 (d, J = 8 Hz, 1 H, ArH), 7.05 
(d, J = 8 Hz, 1 H, ArH). Anal. Calcd for C21H2bN 07: C, 62.5; H, 6.25; 
N, 3.47. Found: C, 62.6; H, 6.32; N, 3.44. 

2,4-Bis(2',4'-dimethoxyphenyl)-~-butyrolactone (5). The acid 
3, R = H (1.5 g), in MeOH (100 mL) was treated with NaBH4 (2.0 g), 
added in portions, and the solution was stirred at room temperature 
overnight. The mixture was poured into HzO and the precipitated 
solid was filtered off, washed, air dried, and recrystallized from MeOH 
as white needles (0.6 g), mp 119-121 "C. The aqueous solution was 
extracted with Et20, acidified with dilute hydrochloric acid, and ex- 
tracted with CHC13. The extract was washed, dried, and evaporated 
and the residue was recrystallized from MeOH to give a further 
quantity of the lactone (0.75 9): mp 119-121 "C; IR 1770 cm-' (lactone 
C=O); NMR 6 2.30 (m, J2,30 = 12.5,530,4 = 10.5, and J 3 * , 3 ~  = 13.0 Hz, 
1 H, H-3 p) ,  2.92 (m, J2,3u = 9.0, J3a ,4  = 6.0 Hz, and J3u ,3p  = 13.0 Hz, 
1 H, H-3~43.80 (s, 6 H, 2 X OMe), 3.82 (s, 6 H, 2 X OMe), 4.05 (9, J2,3a 
= 9.0, J2 ,3a  = 12.5 Hz, 1 H, H2), 5.74 (4, J 3 n , 4  = 6.0, J3p ,4  = 10.5 Hz, 
1 H, H4), 6.38-6.60 (m, 4 H, ArH), 7.11 (d, J = 9 Hz, 1 H, ArH), 7.42 
(d, J = 8 Hz, 1 H, ArH); MS mle  358 (M+), 314 (M - C02). Anal. 
Calcd for C20H2206: C, 67.04; H, 6.15. Found: C,  67.1; H, 6.19. 
2,4-Bis(2',4'-dimethoxyphenyl)but-2-en-4-olide (7). The acid 

3, R = H (0.75 g), in Ac2O (10 mL) was heated under reflux for 3 h6 
and the solution was allowed to cool and was poured into ice-water. 
The precipitate was filtered off, washed with H20, air dried, and re- 
crystallized from Me2CO-MeOH as pale yellow prisms: mp 150-151 
O C  (0.5 g); IR 1750 cm-' (a,p-unsaturated lactone C=O); NMR 6 3.81 
(s,3 H,OMe),3.84 (s,6 H , 2  X OMe),3.87 (s ,3  H,OMe),6.32 ( d , J  = 
2 Hz, 1 H, H4), 6.38-6.63 (m, 4 H, ArH), 7.11 (d, J = 9 Hz, 1 H, ArH), 
7.87 (d, J = 2 Hz, 1 H, H3), 8.26 (d, J = 8 Hz, 1 H, ArH). Anal. Calcd 
for C2oH~oOe: C, 67.40; H, 5.66. Found. C, 67.4; H, 5.63. 
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In our exploratory studies involving the synthesis and re- 
duction characteristics of alkoxyborohydrides,l we required 
a simple and direct route to alkyl and aryl borates of varying 
structures, applicable to preparation of fractional molar 
quantities. 

Existing routes of borate esters2 can be broadly classified 
into three types: (1) direct esterification of boric acid or an- 
hydride with azeotropic distillation of water; ( 2 )  transesteri- 
fication with a low boiling borate (usually methyl or ethyl 
borate); and (3) reaction of sodium borohydride with acetic 
acid in the presence of excess alcohol (eq 1). 

NaBH4 + CH3COOH + ROH (excess) - CH3COONa + B(ORI3 + 4H2r (1) 
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